A combined cell therapy and in-situ tissue-engineering approach for myocardial repair.
نویسندگان
چکیده
Myocardial cell-replacement strategies are hampered by limited sources for human cardiomyocytes and by significant cell loss following transplantation. We tested the hypothesis that a combined delivery of cardiomyocytes with an in-situ polymerizable hydrogel into a post-MI rat heart will result in better functional outcomes than each intervention alone. A photopolymerizable, biodegradable, PEGylated-fibrinogen (PF) hydrogel matrix was used as the carrier for the cardiomyocytes [neonatal rat ventricular cardiomyocytes (NRVCMs) or human embryonic stem cell-derived cardiomyocytes (hESC-CMs)]. Infarcted rat hearts (LAD ligation) were randomized to injection of saline, NRVCMs, biopolymer, or combined biopolymer-cell delivery. Echocardiography revealed typical post-infarction remodeling after 30 days in the saline-injected control group [deterioration of fractional shortening (FS) by 31.0 ± 3.6%]. Injection of NRVCMs or PF alone significantly (p < 0.01) altered this remodeling process (slightly increasing FS by 3.1 ± 6.6% and 0.5 ± 5.3% respectively). Co-injection of the NRVCMs with PF matrix resulted in a significant increase in the cell-graft area (by 144%) and in the highest improvements in FS (by 26.3 ± 6.6%). Finally, feasibility studies were performed with the PF matrix and hESC-CMs. We conclude that an injectable in-situ forming hydrogel can act as a cardiomyocyte cell-carrier and add to the beneficial effects of the grafted cells in preventing unfavorable post-infarction cardiac remodeling.
منابع مشابه
Role of Stem Cells in Cardiac Cell Therapy and Tissue Engineering
Background: In spite of promising results of conventional treatments for myocardial infarction, including medications, stent implantation, and coronary artery bypass grafting, the disease and its complications, especially heart failure, are highly prevalent because these methods could not reverse the cell loss, which is the main problem. Currently, heart transplantation, as the last option f...
متن کاملStem Cells in Regenerative Endodontics
Background Currently, clinical endodontics includes procedures that are based on the ability of stem cells to accomplish repair (eg, direct pulp capping, apexogenesis, apexification, and even pulpal regeneration). An attempt is made to critically assess the current status in pulp regeneration therapy. Methods: Systematically, 2 distinctly different strategies exist involving stem cells for t...
متن کاملAre Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملA Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملA Brief Review of New Advances in the Treatment of Spinal Cord Injuries
Introduction: Spinal Cord Injuries (SCIs) are the main factor in the sensory disorders, which are caused by spinal cord strikes such as car accidents. Previously it was thought that SCIs could not be treated. However, new advances in neurology showed possible treatment to relieve pain in these patients. This article presents a brief review about physiology of spinal cord, kinds of injuries and ...
متن کاملDesigning Nanofiber Multilayer Composite Scaffolds and Lyophilized Blood Growth Factors in the Process of Osteogenesis
Background and purpose: Tissue engineering and cell therapy, as promising therapies, provide the opportunity to repair bone lesions and defects. Combined scaffolds, synthetic and natural polymers can provide a suitable structure for differentiation of Wharton Jelly mesenchymal stem cells (WJ-MSCs) into bone. In current study, the effect of lyophilized blood growth factors in promoting the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 30 شماره
صفحات -
تاریخ انتشار 2011